
 1

Practical Animation of Liquids

Nick Foster*

PDI/DreamWorks
Ronald Fedkiw**

Stanford University

Abstract
We present a general method for modeling and animating liquids.
The system is specifically designed for computer animation and
handles viscous liquids as they move in a 3D environment and
interact with graphics primitives such as parametric curves and
moving polygons. We combine an appropriately modified semi-
Lagrangian method with a new approach to calculating fluid flow
around objects. This allows us to efficiently solve the equations of
motion for a liquid while retaining enough detail to obtain
realistic looking behavior. The object interaction mechanism is
extended to provide control over the liquid’s 3D motion. A high
quality surface is obtained from the resulting velocity field using a
novel adaptive technique for evolving an implicit surface.
Keywords: animation, computational fluid dynamics, implicit
surface, level set, liquids, natural phenomena, Navier-Stokes,
particles, semi-Lagrangian.

1. Introduction
The desire for improved physics-based animation tools has grown
hand in hand with the advances made in computer animation on
the whole. It is natural then, that established engineering
techniques for simulating and modeling the real world have been
modified and applied to computer graphics more frequently over
the last few years. One group of methods that have resisted this
transition are those used to model the behavior of liquids from the
field of computational fluid dynamics (CFD). Not only are such
techniques generally complex and computationally intensive, but
they are also not readily adaptable to what could be considered
the basic requirements of a computer animation system.
One of the key difficulties encountered when using these methods
for animation directly characterizes the trade off between
simulation and control. Physics-based animations usually rely on
direct numerical simulation (DNS) to achieve realism. In
engineering terms, this means that initial conditions and boundary
conditions are specified and the process is left to run freely with
only minor influence on the part of the animator. The majority of
engineering techniques for liquid simulation assume this model.
From an animation viewpoint, we are interested in using
numerical techniques to obtain behaviors that would be
prohibitive to model by hand. At the same time we want control

over the global, low frequency motion so we can match it to the
behavior we are trying to create. This then becomes the goal when
transitioning between engineering and computer animation;
preserve as much of the realistic behavior as feasible while
allowing for control over motion on both a local and global scale.
This has to be achieved without compromising the overall
requirement of a visually coherent and realistic look.
This paper specifically addresses these issues for liquid animation.
The method presented is for animating viscous liquids ranging
from water to thick mud. These liquids can freely mix, move
arbitrarily within a fixed three-dimensional grid and interact
realistically with stationary or moving polygonal objects. This is
achieved for animation by trading off engineering correctness for
computational efficiency.
We start with the Navier-Stokes equations for incompressible
flow and solve for liquid motion using an adaptation of a semi-
Lagrangian method introduced recently to graphics for solving
fluid flows [25]. These methods usually result in mass dissipation.
While not an issue for gas or smoke, this is visually unacceptable
for modeling liquids. We correct for this by tracking the motion of
the liquid surface using a novel hybrid combination of inertialess
particles and an implicit surface called a level set. The level set
prevents mass dissipation while the particles allow the liquid to
still splash freely. A useful consequence is that this combined
surface can be rendered in a highly believable way.
The next innovation involves taking account of the effects of
moving polygonal objects within the liquid. We develop a new
technique that, while not accurate in an engineering sense,
satisfies the physics of object/liquid interactions and looks
visually realistic. This method is efficient and robust, and we
show that it can be adapted to provide low frequency directional
control over the liquid volume. This allows us to efficiently

* nickf@pdi.com, ** fedkiw@cs.stanford.edu

Figure 1: A ball splashes into a tank of water.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2001 2. REPORT TYPE

3. DATES COVERED
 00-00-2001 to 00-00-2001

4. TITLE AND SUBTITLE
Practical Animation of Liquids

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Stanford University ,Computer Science Department,Stanford,CA,94305

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
SIGGRAPH 2001, Los Angeles, CA, 12-17 Aug 2001

14. ABSTRACT
We present a general method for modeling and animating liquids. The system is specifically designed for
computer animation and handles viscous liquids as they move in a 3D environment and interact with
graphics primitives such as parametric curves and moving polygons. We combine an appropriately
modified semi-Lagrangian method with a new approach to calculating fluid flow around objects. This
allows us to efficiently solve the equations of motion for a liquid while retaining enough detail to obtain
realistic looking behavior. The object interaction mechanism is extended to provide control over the
liquid’s 3D motion. A high quality surface is obtained from the resulting velocity field using a novel
adaptive technique for evolving an implicit surface.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 2

calculate liquid behavior that would be impossible to get by hand,
while at the same time allowing us to “dial-in” specific motion
components.
When the techniques described above are applied together, the
result is a comprehensive system for modeling and animating
liquids for computer graphics. The main contributions of the
system are a numerical method that takes the minimal
computational effort required for visual realism combined with
tailor-made methods for handling moving objects and for
maintaining a smooth, temporally coherent liquid surface.

2. Previous Work
The behavior of a volume of liquid can be described by a set of
equations that were jointly developed by Navier and Stokes in the
early eighteen hundreds (see next section). The last fifty years has
seen an enormous amount of research by the CFD community into
solving these equations for a variety of engineering applications.
We direct the interested reader to Abbot and Basco [1] which
covers some of the important principles without being too
mathematically dense.
Early graphics work concentrated on modeling just the surface of
a body of water as a parametric function that could be animated
over time to simulate wave transport [12, 22, 23]. Kass and Miller
[17] approximated the 2D shallow water equations to get a
dynamic height field surface that interacted with a static ground
“object”. Chen and Lobo [4] extended the height field approach
by using the pressure arising from a 2D solution of the Navier-
Stokes equations to modulate surface elevation. O’Brien and
Hodgins [20] simulated splashing liquids by combining a particle
system and height field, while Miller and Pearce [19] used
viscous springs between particles to achieve dynamic flow in 3D.
Terzopoulos, Platt and Fleischer [27] simulated melting
deformable solids using a molecular dynamics approach to
simulate the particles in the liquid phase.
Surface or particle based methods are relatively fast, especially in
the case of large bodies of water, but they don’t address the full
range of motion exhibited by liquids. Specifically, they don’t take
advantage of the realism inherent in a full solution to the Navier-
Stokes equations. They are also not easily adapted to include
interaction with moving objects. Foster and Metaxas [11]
modified an original method by Harlow and Welch [15] (later
improved by others, see e.g. [5]) to solve the full equations in 3D
with arbitrary static objects and extended it to include simple
control mechanisms [9]. Foster and Metaxas also applied a similar
technique to model hot gases [10]. Stam [25] replaced their finite
difference scheme with a semi-Lagrangian method to achieve
significant performance improvements at the cost of increased
rotational damping. Yngve et al. used a finite difference scheme to
solve the compressible Navier-Stokes equations to model shock
wave and convection effects generated by an explosion [28].

3. Method Outline
The Navier-Stokes equations for describing the motion of a liquid
consist of two parts. The first, enforces incompressibility by
saying that mass should always be conserved, i.e.

0∇ ⋅ =u , (3.1)

where u is the liquid velocity field, and

()/ x, / y, / z∇ = ∂ ∂ ∂ ∂ ∂ ∂

is the gradient operator. The second equation couples the velocity
and pressure fields and relates them through the conservation of
momentum, i.e.

() ()t
1

p + = ν∇ ⋅ ∇ − ⋅ ∇ − ∇
ρ

u u u u g . (3.2)

This equation models the changes in the velocity field over time
due to the effects of viscosity (ν), convection, density (ρ),
pressure (p), and gravity (g). By solving (3.1) and (3.2) over time,
we can model the behavior of a volume of liquid. The new
algorithm we are proposing to do this consists of six
straightforward steps.

I. Model the static environment as a voxel grid.
II. Model the liquid volume using a combination of

particles and an implicit surface.
Then, for each simulation time step
III. Update the velocity field by solving (3.2) using finite

differences combined with a semi-Lagrangian method.
IV. Apply velocity constraints due to moving objects.
V. Enforce incompressibility by solving a linear system

built from (3.1).
VI. Update the position of the liquid volume (particles and

implicit surface) using the new velocity field.
These steps are described in detail in the following sections. Steps
IV and V are presented in reverse order for clarity.

4. Static Environment
Equations (3.1) and (3.2) model a liquid as two coupled dynamic
fields, velocity and pressure. The motion of the liquid we are
modeling will be determined by evolving these fields over time.
We start by representing the environment that we want the liquid
to move in as a rectangular grid of voxels with side length ∆τ. The
grid does not have to be rectangular, but the overhead of unused
(non-liquid containing) cells will be low and so it is convenient.
Each cell has a pressure variable at its center and shares a velocity
variable with each of its adjacent neighbors (see figure 2). This
velocity is defined at the center of the face shared by the two

∆τ

∆τ

∆τ

z x

y

(i,j,k)

u

u

u
i

k

j+1

Figure 2: A single grid cell with three of its six face velocities
shown.

 3

neighboring cells and represents the magnitude of the flow normal
to that face. This is the classic “staggered” MAC grid [15]. Each
cell is then either tagged as being empty (available to be filled
with liquid) or filled completely with an impermeable static
object. Despite the crude voxelized approximation of both objects
and the liquid volume itself, we’ll show that we can still obtain
and track a smooth, temporally coherent liquid surface.

5. Liquid Representation
The actual distribution of liquid in the environment is represented
using an implicit surface. The implicit function is derived from a
combination of inertialess particles and a dynamic isocontour. The
isocontour provides a smooth surface to regions of liquid that are
well resolved compared to our grid, whereas the particles provide
detail where the surface starts to splash.

5.1 Particles
Particles are placed (or introduced via a source) into the grid
according to some initial liquid distribution. Their positions then
evolve over time by simple convection. Particle velocity is
computed directly from the velocity grid using tri-linear
interpolation and each particle is moved according to the
inertialess equation dxp/dt = vx, where vx is the fluid velocity at xp.
Particles have a low computational overhead and smoothly
integrate the changing liquid velocity field over time. The
obvious drawback to using them, however, is that there is no
straightforward way to extract a smooth polygonal (or parametric)
description of the actual liquid surface. This surface is preferred
because we want to render the liquid realistically using traditional
computer graphics techniques. It is possible to identify it by
connecting all the particles together into triangles, although
deducing both the connectivity and set of surface triangles is
difficult. In addition, since the particles do not generally form a
smooth surface, the resulting polygonal mesh suffers from
temporal aliasing as triangles “pop” in or out.

5.2 Isocontour
An alternative technique for representing the liquid surface is to
generate it from an isocontour of an implicit function. The
function is defined on a high resolution Eulerian sub-grid that sits
inside the Navier-Stokes grid. Let each particle represent the
center of an implicitly defined volumetric object (see Bloomenthal
et al. [3] for a survey of implicit surfaces). Specifically, an
implicit function centered at the particle location xp with radius r
is given by

 2 2 2
p i pi j pj k pk() = (x x) +(x x) +(x x) rφ − − − −x .

The surface of that particle is defined as the spherical shell around
xp where φp(x)=0. An implicit function, φ(x), is then defined over
all the particles by taking the value of φp(x) from the particle
closest to x. If we sample φ(x) at each sub-grid point we can use a
marching cubes algorithm [18] to tessellate the φ(x)=0 isocontour
with polygons. More sophisticated blend functions could be used
to create an implicit function, however, we are going to
temporally and spatially smooth φ(x) so it isn’t necessary. We
refer those interested in wrapping implicit surfaces around
particles to the work of Desbrun and Cani-Gascuel [7].

The first step towards smoothing the surface is to normalize φ so
that |φ(x)| equals the distance from x to the closest point on the
zero isocontour. The sign of φ is set negative inside the liquid and

positive outside. This signed distance function can be created
quickly using the Fast Marching Method [24] starting from the
initial guess of φ(x) defined by the particles as outlined above.

In order to smooth out φ to reduce unnatural “folds” or “corners”
in the surface (see figure 3), a smoothing equation of the form

()()=0 1S η
ηφ = − φ ∇φ − , (5.1)

is used to modify values of φ close to the φ(x)=0 isocontour. S(φ)
is a smoothed sign function given by

()
2 2

S
φ

φ =
φ + ∆τ

.

If applied for a few relaxation steps in fictitious time η
(everything else remains constant), (5.1) smooths out the φ(x)=0
isocontour while maintaining overall shape. Once smoothed, the
isocontour can be ray traced directly using a root finding
algorithm to identify the zero values of φ. A fast root finder can be
built easily because at any sub-grid point the value of φ explicitly
gives the minimum step to take to get closer to the surface. Note
that the surface normal is given by n = ∇φ ∇φ .

By creating a smooth isocontour for each frame of animation, we
get an improved surface representation compared to using
particles alone. There are still drawbacks however. A high density
of particles is required at the φ(x)=0 isocontour before the surface
looks believably flat. Particles are also required throughout the
entire liquid volume even when it’s clear that they make no
contribution to the visible surface. The solution is to create φ once
using the particles, and then track how it moves using the same
velocity field that we’re using to move the particles. This leads to
a temporally smoothed dynamic isosurface known in the CFD
literature as a level set.

5.3 Dynamic Level Set
An obvious way to track the evolution of the surface of a volume
of liquid would be to attach particles directly to the surface in its
initial position and then just move them around in the velocity
field. This would require adding extra particles when the surface
becomes too sparsely resolved, and removing them as the surface
folds, or “splashes” back over itself. An alternative method which
is intuitively similar, but that doesn’t use particles, was developed
by Osher and Sethian [21] and is called the level set method.

We want to evolve φ directly over time using the liquid velocity
field u. We have a smooth surface but need to conform, visually at
least, to the physics of liquids. It has been shown [21] that the

Figure 3: The isocontour due to the implicit function around
the particles, interpolated φ values, and smoothed φ values,
respectively.

 4

equation to update φ under these circumstances has the following
structure,

t 0φ + ⋅ ∇φ =u . (5.2)

Using (5.2), the surface position is evolved over time by tracking
φ(x)=0. The (u ⋅∇ φ) term is a convection term similar to the
(u ⋅∇)u term in (3.2) implying that we could use a semi-
Lagrangian method to solve this equation. However, since this
equation represents the mass evolution of our liquid, the semi-
Lagrangian method tends to be too inaccurate. Instead we use a
higher order upwind differencing procedure [1] on the
(u ⋅∇ φ) term. Fedkiw et al. [8] used this methodology to track a
fluid surface and give explicit details on solving (5.2). This
method can suffer from severe volume loss especially on the
relatively coarse grids commonly used in computer graphics. This
is clearly visible when regions of liquid break away during
splashing and then disappear because they are too small to be
resolved by the level set. We require visual coherency for this to
be a useful graphics technique and so the level set method needs
to be modified to preserve volume.

5.4 Hybrid Surface Model
Particle evolution is a fully Lagrangian approach to the mass
motion while level set evolution is a fully Eulerian approach.
Since they tend to have complementary strengths and weakness, a
combined approach gives superior results under a wider variety of
situations. Level set evolution suffers from volume loss near
detailed features while particle evolution suffers from visual
artifacts in the surface when the number of particles is small.
Conversely, the level set is always smooth, and particles retain
detail regardless of flow complexity. Therefore we suggest a novel
combination of the two approaches.

At each time step we evolve the particles and the level set φ
forward in time. Next, we use the updated value of the level set
function to decide how to treat each particle. If a particle is more
than a few grid cells away from, and inside the surface, as
indicated by the locally interpolated value of φ, then that particle
is deleted. This increases efficiency since particles are only
needed locally near the surface of the liquid as opposed to
throughout the entire liquid volume. In addition, for cells close to
φ(x)=0 that are sparsely populated, extra particles can be
introduced “within” the isocontour. Thus, for a bounded number
of particles, we get improved surface resolution.
Next, for each particle near the surface, the locally interpolated
curvature of the interface, calculated as

()k = ∇ ⋅ ∇φ ∇φ ,

is used to indicate whether or not the surface is smooth. Smooth
regions have low curvature and the particles are ignored allowing
the level set function to give a very smooth representation of the
liquid surface. On the other hand, regions of high curvature
indicate splashing. In these regions, the particles are a better
indicator of the rough surface topology. Particles in these regions
are allowed to modify the local values of φ. At grid points where
the implicit basis function for the particle would give a smaller
value of φ (i.e. a particle is “poking” out of the zero level set), this
smaller value is used to replace the value obtained from the time
evolution of φ.

Even with the tight coupling between the particles and the level
set, some particles will escape the inside of the liquid layer since
the grid is too coarse to represent them individually. These
particles can be rendered directly as small liquid drops. In
addition, these stray particles could be used as control particles to
indicate the presence of fine spray or mist.

6. Updating the Velocity Field
We have a representation of the graphics environment and a way
of tracking the surface of a volume of liquid. We can now apply
(3.2) to the existing velocity field to advance it through an Euler-
integration time step ∆t. The equation is solved in three stages.
First we compute ∆t using the CFL condition (see Appendix A).
Next, we update the convective component, i.e. (u ⋅∇)u, using a
first order semi-Lagrangian method, as per Courant et al. [6] and
by Stam [25]. We use the same formulation as Stam and refer
readers to his description. Standard central differencing is then
used on the viscous terms of (3.2) as described by Foster and
Metaxas [11]. The results from this and the preceding calculation
are added together to get an updated (though not mass conserving)
velocity field for time t+∆t.
Semi-Lagrangian methods allow us to take large time steps
without regard for the sometimes overly restrictive CFL condition
[26]. Unfortunately, these large time steps come at the cost of
added dissipation. This is visually acceptable for gases such as
smoke where it appears realistic. For liquids however, mass
dissipation ruins the visual effect. Therefore, even though we use
a semi-Lagrangian method to update (3.2), the time step for
evolving the particles and the level set still needs to be limited
according to a plausible CFL condition. Updating the surface
position isn’t particularly expensive computationally, and so we
alternate between a large time step for updating the Navier-Stokes
equations and a series of small time steps (that add up to the large
time step) for the particles and the level set. Our experience
suggests that the velocity field time step can only be a few
(around five) times bigger than that dictated by the usual CFL
criterion. However, even this gives tremendous computational
savings, since enforcing incompressibility (step V, discussed in
section 8) is the most expensive part of the algorithm.

Figure 4: Water pours into a container causing a complex
surface to develop.

 5

We caution the reader that using a particle only evolution with the
semi-Lagrangian method introduces noise into the surface, and
that using a level set only evolution with the semi-Lagrangian
method gives noticeable volume loss. The key to making the
semi-Lagrangian method work for liquids is the mixed Eulerian-
Lagrangian formulation that uses both particles and level sets to
evolve the surface position over time.

7. Boundary Conditions
When solving (3.2) within the grid, we need to specify pressure
and velocity values for certain cells. We want stationary object
cells to resist liquid motion and cells that represent the boundary
between air and liquid to behave appropriately.

7.1.1 Non-liquid Cells
Cells in the grid that don't contain particles and aren’t contained
within the isosurface are either considered empty (open air) or are
part of an object. If a cell is empty, its pressure is set to
atmospheric pressure, and the velocity on each of its faces shared
with another empty cell is set to zero. This assumes that air
dynamics has a negligible effect. An object cell, on the other
hand, can have velocities and pressures set using many different
combinations to approximate liquid flowing into or out of the
environment, or to approximate different object material
properties. Foster and Metaxas [10] summarize and discuss
methods to do this.

7.1.2 Liquid Surface
Other grid cells that require special attention are those that
contain part of the φ(x)=0 isocontour. Such cells represent what
we know about the location of the liquid surface within the grid.
The movement of the isocontour will determine how the surface
evolves, but we need to set velocities on faces between empty and
liquid cells so that normal and tangential stresses are zero.
Intuitively, we need to make sure that the "air" doesn't mix with or
inhibit the motion of the liquid, while allowing it to flow freely
into empty cells. This is done by explicitly enforcing
incompressibility within each cell that contains part of the liquid
surface. Velocities adjacent to a liquid filled cell are left alone,
whereas the others are set directly so (3.1) is satisfied for that cell.
The pressure in a surface cell is set to atmospheric pressure.

8. Conservation of Mass
The velocity field generated after evolving the Navier-Stokes
equations (steps III and IV) has rotation and convection
components that are governed by (3.2) (excluding the pressure
term). However, (3.1), conservation of mass, is only satisfied in
surface cells where we have explicitly enforced it. The best we
can do to preserve mass within our grid is to ensure that the
incompressibility condition is satisfied for every grid cell (at least
to some tolerance). Foster and Metaxas [11] achieved this using a
technique called Successive Over Relaxation.
A more efficient method for enforcing incompressibility comes
from solving the linear system of equations given by using the
Laplacian operator to couple local pressure changes to the
divergence in each cell. Specifically, this gives

2p= t∇ ρ∇ ⋅ ∆u , (8.1)

where 2∇ p is the spatial variation (Laplacian) of the pressure and
u is the velocity field obtained after solving (3.2). Applied at the
center of a cell, (8.1) can be discretized as

 ()
{ }

()
{ }n+1 n-1 n+1 n

n ijk n ijk
p +p 6p u u

t= =

∆τ
∑ ∑− = ρ −

∆
, (8.2)

where pn ± 1 is the pressure from the cell ahead (+) or behind (-) in
the n direction, and the u values are taken directly from the grid
cell faces. Using (8.2), we form a linear system AP = b where P is
the vector of unknown pressures needed to make the velocity field
divergence free, b is the RHS of (8.2), and A has a regular but
sparse structure. The diagonal coefficients of A, aii, are equal to
the negative number of liquid cells adjacent to celli (e.g., -6 for a
fully “submerged” cell) while the off diagonal elements are simply
aij=aji=1 for all liquid cellsj adjacent to celli.
Conveniently, the system described above is symmetric and
positive definite (as long as there is at least one surface cell as part
of each volume). Static object and empty cells don’t disrupt this
structure. In that case pressure and velocity terms can disappear
from both sides of (8.2), but the system remains symmetric.
Because of this, it can be solved quickly and efficiently using a
Preconditioned Conjugate Gradient (PCG) method. Further
efficiency gains can be made by using an Incomplete Choleski
preconditioner to accelerate convergence. There is a wealth of
literature available regarding PCG techniques and we recommend
any of the standard implementations, see Barret et al. [2] for some
basic templates. Once the new pressures have been determined,
the velocities in each cell are updated according to

()t t
{ijk} {ijk} n n-1

t
u = u p p+∆ ∆

− −
ρ∆τ

The resulting velocity field conserves mass (is divergence free)
and satisfies the Navier-Stokes equations.

9. Moving Objects
Previous techniques proposed for liquid animation could deal
with static objects that have roughly the same resolution as the
grid, but they have difficulty dealing with moving objects.
Unfortunately, the CFD literature has little to offer to help resolve
the effects of moving objects on a liquid in terms of animation.
There are sophisticated methods available for handling such
interactions, but they typically require highly resolved
computational grids or a grid mechanism that can adapt itself to
the moving object surface. Neither approach is particularly well
suited to animation because of the additional time complexity
involved. Therefore, we propose the following method for
handling interactions between moving objects and the liquid.
Consider an object (or part of an object) moving within a cell that
contains liquid. There are two basic conditions that we want to
enforce with respect to the computational grid, and an additional
condition with respect to the surface tracking method. These are

1. Liquid should not flow into the object. At any point of
contact, the relative velocity between the liquid and
object along the object’s surface normal should be
greater than or equal to zero.

2. Tangential to the surface, the liquid should flow freely
without interference.

3. Neither the particles nor the level set surface should pass
through any part of the surface of the object.

 6

The last of these is relatively straightforward. We know where the
polygons that comprise the object surface are and in what
direction they are moving. We simply move the particles so that
they are always outside the surface of the object. As long as we
accurately take account of the velocity field within the grid then
the isocontour will remain in the correct position relative to the
object.
To prevent liquid from flowing into the object we directly set the
component of liquid velocity normal to the object. We know the
object surface normal, ns, and can calculate the liquid velocity
relative to that surface, vr, in a given cell. If vr.ns < 0 then liquid is
flowing through the surface. In such cases we manipulate u in the
cell so that vr.ns = 0 leaving the tangential (“slip”) part of the
velocity unchanged.
These velocities need to be applied without introducing visual
artifacts into the flow. The following method solves for both
normal and tangential velocity components. It’s relatively
intuitive, and it seems to work well in practice. The steps are

1. As a boundary condition, any cell within a solid object has
its velocities set to that of the moving object.

2. The velocity field is updated using (3.2). No special
consideration is given to cells containing an object, i.e.
they are all allowed to change freely as if they contain
liquid.

3. Each cell that intersects an object surface gets the
component of the object velocity along its normal set
explicitly as outlined above.

4. Cells internal to the object have their velocities set back to
the object velocity.

5. During the mass conservation step (section 8) the velocity
for any grid cell that intersects the object is held fixed.

The result of this approach is that liquid is both pushed along by
an object while being allowed to flow freely around it, causing
realistic-looking behavior in the mean time. Obviously it’s only
possible to accurately account for one polygon face per grid cell.
Objects that are more detailed with respect to the grid can still be
handled by determining an average object surface normal and
velocity for each intersecting cell, but grid resolution remains the
limiting factor.

10. Control
Animation is all about control. Having things behave according to
some arbitrary aesthetic is the goal of most production software.
The difficulty is in providing this level of control over a physics-
based animation while still maintaining a realistic behavioral
component. The nature of the governing equations of motion of
liquids means that they will always swirl, mix, and splash unless
the applied forces are identical everywhere. This necessarily limits
the level of control that we can have over the final motion and
comes with the territory of non-linear simulation.
Gates [13] has shown that mass conserving flow fields can be
blended with calculated fields to get good non-dynamic results.
The Navier-Stokes equations allow for the body force term, g, to
be manipulated directly [9] much like a traditional particle system.
Forces aren't always a very intuitive way of getting motion that we
want however. The moving object mechanism on the other hand,
is well suited to this. Instead of moving polygons, we can
explicitly set velocities anywhere in the grid by introducing “fake”

surfaces (a single point even) that have normals and velocities
pointing in the direction that we want the liquid to go. Setting the
normal and tangential velocities in individual cells is also possible
if it is done before the mass conservation calculation. This allows
the solver to smooth out any lack of physical correctness in
applied velocities before passing them into (3.2).
As a brief example, consider a set of 3D parametric space curves
that define the desired path for the liquid to follow. We instance a
set of points along each curve giving each point a parametric
coordinate ϕp. A point’s spatial position is then given simply by
the curve definition, i.e. xp=F(ϕp). The velocity of the point can
then be described as

()p p p(t) d () dC F= ϕ ϕv

where C(t) is a monotonic key framed scaling function. C(t) is
also used to update ϕp over time according to dϕp/dt = C(t). The
“fake” surface normal of the point is then simply np = vp/|vp|. By
manipulating xp, vp, and np over time, we can “trap” small pockets
of liquid and control them directly. The governing equations then
make sure that neighboring liquid attempts to follow along.
This basic approach can be adapted to surfaces or even volumetric
functions as long as they vary smoothly. While still not giving
perfect direct control over the liquid motion, when combined with
force fields it is good enough to make it a useful animation tool.

11. Results
The animation system described in the preceding sections was
used to generate all of the examples in this paper. The basic
Navier-Stokes solver and implicit surface are demonstrated by the
container-filling example in figure 4. The combination of particles
and level set make sure that the resulting surface stays smooth and
behaves in a physically believable way. The splashing object
examples in figures 1, 5 and 6 show close interaction between the
liquid and moving objects. They also show how the hybrid surface
can handle extreme splashing without either the particles or level
set being apparent. The particles play a large role in both cases by
allowing the liquid to “splash” at a higher resolution than would
be possible with the level set alone. All of these images were
rendered using a ray-tracing algorithm that marches through the
implicit surface grid as outlined in section 5.
The final example, figure 7, makes use of just a spherical implicit
function around each particle. It shows the interaction between a
thick (high viscosity) liquid and a hand animated character. The
character surface is sampled at each grid cell and the mechanisms
described in section 9 take account of all the motion in the scene.
This includes the character filling his mouth with mud. The mud
is later ejected using a 3D space curve as a controller as outlined
in section 10. The captions to each figure give the static grid size
used during calculation along with computation times per frame
(for motion, not rendering) on a PentiumII 500MHz.

12. Conclusion
We have presented a method for modeling and animating liquids
that is a pragmatic compromise between the numerical care that
needs to be taken when simulating non-linear physics and the
interaction and control animators require. Where appropriate, we
have drawn on techniques from computational fluid dynamics and
combined them with recent computer graphics advances as well as
new methods for free surface evolution and interaction between

 7

moving objects and the liquid volume. The result is a technique
that is very general, efficient, and offers flexible control
mechanisms for specifying how the liquid should behave.

13. Acknowledgements
The work of the second author was supported in part by ONR
N00014-97-1-0027.

A. Courant-Friedrichs-Levy (CFL) Condition
The CFL condition is a restriction on the size of the time step, ∆t,
that can be used together with a time-marching numerical
simulation. It says that ∆t must be less than the minimum time
over which “something significant” can occur in the system for
the simulation to remain numerically stable. The CFL condition
depends both on the physical system being modeled as well as the
specifics of the discretization method employed. In the context of
the system described in this paper a good CFL condition is that a
discrete element of liquid cannot “jump over” a cell in the
computational grid, i.e. ∆t < ∆τ / |u|.
Note that the viscosity related terms also impose a CFL type
restriction. This can be avoided by locally adjusting the
magnitude of the viscosity in cells where the viscous terms would
dictate the necessity for a smaller time step.

References
[1] Abbot, M. and Basco, D., “Computational Fluid Dynamics –

An Introduction for Engineers”, Longman, 1989.
[2] Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J.,

Dongarra, J., Eijkhout, V., Pozo, R., Romine, C. and van der
Vorst, H., “Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods”, Society for
Industrial and Applied Mathematics, 1993.

[3] Bloomenthal, J., Bajaj, C., Blinn, J., Cani-Gascual, M.-P.,
Rockwood, A., Wyvill, B. and Wyvill, G., “Introduction to
Implicit Surfaces”, Morgan Kaufmann Publishers Inc., San
Francisco, 1997.

[4] Chen, J. and Lobo, N., “Toward Interactive-Rate Simulation
of Fluids with Moving Obstacles Using the Navier-Stokes
Equations”, Graphical Models and Image Processing 57,
107-116 (1994).

[5] Chen, S., Johnson, D., Raad, P. and Fadda, D., “The Surface
Marker and Micro Cell Method”, Int. J. Numer. Methods in
Fluids 25, 749-778 (1997).

[6] Courant, R., Issacson, E. and Rees, M., “On the Solution of
Nonlinear Hyperbolic Differential Equations by Finite
Differences”, Comm. Pure and Applied Math 5, 243-255
(1952).

[7] Desbrun, M. and Cani-Gascuel, M.P., “Active Implicit
Surface for Animation”, Graphics Interface 98, 143-150
(1998).

[8] Fedkiw, R., Aslam, T., Merriman, B. and Osher, S.,
”A Non-Oscillatory Eulerian Approach to Interfaces in
Multimaterial Flows (The Ghost Fluid Method)”,
J. Comput. Phys. 152, 457-492 (1999).

[9] Foster, N. and Metaxas, D., “Controlling Fluid Animation”,
Computer Graphics International 97, 178-188 (1997).

[10] Foster, N. and Metaxas, D., “Modeling the Motion of a Hot
Turbulent Gas”, ACM SIGGRAPH 97, 181-188 (1997).

[11] Foster, N. and Metaxas, D., “Realistic Animation of
Liquids”, Graphical Models and Image Processing 58, 471-
483 (1996).

[12] Fournier, A. and Reeves, W.T., “A Simple Model of Ocean
Waves”, ACM SIGGRAPH 86, 75-84 (1986).

[13] Gates, W.F., “Interactive Flow Field Modeling for the
Design and Control of Fluid Motion in Computer
Animation”, UBC CS Master’s Thesis, 1994.

[14] Golub, G.H. and Van Loan, C.F., “Matrix Computations”,
The John Hopkins University Press, 1996.

[15] Harlow, F.H. and Welch, J.E., “Numerical Calculation of
Time-Dependent Viscous Incompressible Flow of Fluid with
a Free Surface”, The Physics of Fluids 8, 2182-2189 (1965).

[16] Kang, M., Fedkiw, R. and Liu, X.-D., “A Boundary
Condition Capturing Method For Multiphase Incompressible
Flow”, J. Sci. Comput. 15, 323-360 (2000).

[17] Kass, M. and Miller, G., “Rapid, Stable Fluid Dynamics for
Computer Graphics”, ACM SIGGRAPH 90, 49-57 (1990).

[18] Lorenson, W.E. and Cline, H.E., “Marching Cubes: A High
Resolution 3D Surface Construction Algorithm”, Computer
Graphics 21, 163-169 (1987).

[19] Miller, G. and Pearce, A., “Globular Dynamics: A Connected
Particle System for Animating Viscous Fluids”, Computers
and Graphics 13, 305-309 (1989).

[20] O’Brien, J. and Hodgins, J., “Dynamic Simulation of
Splashing Fluids”, Computer Animation 95, 198-205 (1995).

[21] Osher, S. and Sethian, J.A., “Fronts Propagating with
Curvature Dependent Speed: Algorithms Based on
Hamilton-Jacobi Formulations”, J. Comput. Phys. 79, 12-49
(1988).

[22] Peachy, D., “Modeling Waves and Surf”, ACM SIGGRAPH
86, 65-74 (1986).

[23] Schachter, B., “Long Crested Wave Models”, Computer
Graphics and Image Processing 12, 187-201 (1980).

[24] Sethian, J.A. “Level Set Methods and Fast Marching
Methods”, Cambridge University Press, Cambridge 1999.

[25] Stam, J., “Stable Fluids”, ACM SIGGRAPH 99, 121-128
(1999).

[26] Staniforth, A. and Cote, J., “Semi-Lagrangian Integration
Schemes for Atmospheric Models – A Review”, Monthly
Weather Review 119, 2206-2223 (1991).

[27] Terzopoulos, D., Platt, J. and Fleischer, K., “Heating and
Melting Deformable Models (From Goop to Glop)”,
Graphics Interface 89, 219-226 (1995).

[28] Yngve, G., O’Brien, J. and Hodgins, J., “Animating
Explosions”, ACM SIGGRAPH 00, 29-36 (2000).

 8

Figure 5: An ellipsoid slips along through shallow water. The combination of particle and level set tracking allows water to flow over the
object without any visual loss of volume. The environment for this example was 250x75x90 cells. It took approximately seven minutes to
calculate the liquid motion (including surface evolution) per frame.

Figure 6: A close up of the ellipsoid from figure 5 showing the implicit surface derived from combining the particle basis functions and
level set (top), and with the addition of the freely splashing particles raytraced as small spheres (bottom). The environment for this
example was 150x75x90 cells. Calculation times were approximately four minutes per frame.

Figure 7: A fully articulated animated character interacts with viscous mud. The environment surrounding the character is 150x200x150
cells. That resolution is sufficient to accurately model the character filling his mouth with mud. A 3D control curve is used to eject (spit)
the mouthful of mud later in the sequence. This example runs at three minutes per frame.

